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Singularities in complex interfaces

BY PETER CONSTANTIN AND LEO P. KADANOFF

Department of Mathematics, The University of Chicago, Chicago,
1llinois 60637, U.S.A.

We analyse an equation describing the motion of the material interface between two
fluids in a pressure field. The interface can be expressed as the image of the unit circle
under a certain time depending conformal map. This conformal transformation maps
the exterior of the unit circle onto the region occupied by one of the fluids. The
conformal map has singularities in the unit disc. As long as these singularities are
close to the origin, the complicated non-local equation governing the evolution of the
conformal map can be approximated by a somewhat simpler, local equation. We
prove that there exist self-similar solutions of this equation, that they have
singularities away from the origin, that these singularities hit in finite time the unit
circle and that the self-similar blow up is stable to perturbations that respect the
symmetry of the self-similar profile.
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1. Introduction

In a recent work (Constantin & Kadanoff 1990) we derived a model equation for
the interface between two fluids in a pressure field. The physical setting is that of the
well known Hele-Shaw problem (Hele-Shaw 1898; Saffman & Taylor 1958; Saffman
1986 ; Bensimon et al. 1986). Two fluids, one inviscid and one viscous are confined
between closely spaced glass plates. The inviscid fluid is at constant pressure. The
viscous fluid is incompressible and its velocity is proportional to the gradient of its
pressure. The interface moves with the fluids. The pressure jump at the interface is
proportional to the curvature «. The non-dimensionalized proportionality constant
is a small parameter 7, which represents surface tension. A suction mechanism
removes viscous fluid at a rate that makes the area of the region occupied by inviscid
fluid grow linearly in time. Because of the incompressibility and Darcy’s law, the
pressure of the viscous fluid obeys Laplace’s equation. This formalism leads to a
eulerian description of the problem. It has the advantage of generality and the
disadvantage of not describing explicitly the interface. If the suction mechanism
would not be present the time derivative of the length of the boundary would be
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— x roportional to the integral of the square of the gradient of the pressure (and hence
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§ . to the spatial average of the kinetic energy):
o= d 2
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T 8 where D, is the region occupied by the viscous fluid.
— This fact follows from the formula
-
5% %A = —(d—l)J (v-n)HdS (1.2)
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determining the evolution of the area 4 of a hypersurface fin R? with normal » and
mean curvature  when the hypersurface moves with a velocity » (P. Constantin,
unpublished work). In the present case v'n = —c,0p/on and H = k = (771) p, hence
(1.1). The relation (1.1) is modified somewhat if a suction mechanism is present;
nevertheless one may hope that it would be possible to base an existence theory of
weak solutions on the relation corresponding to (1.1). A lagrangian formalism can be
derived using classical potential theory : one writes p as a double layer potential; the
equation p = 7k on the interface becomes a Fredholm integral equation of the second
kind for the potential; computing the gradient of p on the interface provides the time
derivative of the interface. This lagrangian approach is well suited for the study of
the well-posedness versus instability issue. One sees that, in the neighbourhood of the
circular interface, the surface tension has indeed a regularizing effect, making the
problem well-posed in Sobolev spaces of smooth functions, even in the unstable case.
The disadvantage of the direct lagrangian approach is that the nature of the equation
depends on the solution.

The conformal map formalism (Shraiman & Bensimon 1984; Tanveer 1986)
describes the interface as the image of the unit circle under a time dependent
conformal map. At the initial instant of time this map is assumed to have an analytic
extension to the exterior of a disk of radius strictly less than one. Then, as time
passes, the domain of analyticity of the conformal map may shrink. In the zero
surface tension case this formalism leads to an integrable system, if the initial
singularities are isolated and not essential. The singularities can move and reach the
unit circle in finite time, producing a real singularity in the interface. In the case of
non-zero surface tension the question of finite time singularities arising from analytic
initial data is open. The equation obeyed by the conformal map is complicated : it is
both highly nonlinear and highly non-local. If 4 denotes the derivative of the
conformal map considered as a function on the unit circle in the w plane then this
equation is

Oh/Ot = F(h)+1G(h) (1.3)
with F(h) = 2(I+D)(hA(1/|h|?)) (1.4)
and G(h) = 2(l+D)(RA((1/)|h?) DU —24)A " (h))), (1.5)
where H(f) = (U +Re D), (1.6)
A =YI—iH), (1.7)

with H the Hilbert transform on the circle and
Df = waf/ow. (1.8)

An exact solution of (1.3) is the circular interface

h = r(t), (1.9)

where r(t) is the radius of a perfectly circular bubble of area m(1 + 2t). We perform a
change of dependent variable

h=r(t)g (1.10)
so that g = 1 is a steady solution in this new variable. Linearization about it yields
Ww/0s = (—2[—D+71e*D(D2=1))v. (1.11)

We rescaled time s = In (r(¢)). In (1.11) the infinitesimal perturbation v has non-zero
Fourier coefficients only for negative indices. This linear equation reveals much of the

Phil. Trans. R. Soc. Lond. A (1990)
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Singularities in complex interfaces 381

structure of the nonlinear problem. The 7 = 0 case is integrable but ill posed, the
7 > 0 case is well posed in the analytic class we are discussing, but the favourable
effects of surface tension weaken as time progresses. Any initial singularity which is
not placed in the origin, travels in the zero surface tension case and hits the unit circle
in finite time.

In Constantin & Kadanoff (1990) we derived a local equation which approximates
well the equation (1.3). We considered, in order to motivate our derivation, initial
functions A, which can be extended analytically to the complement of a small disc
around the origin; the complex conjugate 2* of 4 is finite throughout the unit circle
and therefore, almost constant near the singularities of 4. The approximation
consists then in replacing 4* in the equation with the value it takes at the origin. The
reason why the resulting equation is local (differential) is transparent once we notice
that the procedure described above, when viewed as operating on functions defined
on the unit circle, consists in replacing the usual product of two functions by the
product of their projections on the space of functions which can be extended
analytically to the exterior of the unit circle. The approximate equation is

dg/ds = 2—2g—Dg+2rD(I —D2) g%, (1.12)
It has the same linearization at ¢ =1 as (1.3), namely (1.11). The main result of
Constantin & Kadanoff (1990) is theorem 1.1.

Theorem 1.1. There exist absolute constants € > 0 and C > 0 such that, if the initial
datum

satisfies

Z g, 0)lp <e

§=0
for some p > 0, then, for any 7 = 0 there exists a unique global solution of (1.12)
[¢9)
g7 w,s) = 1+ X g;(s)w’
i=0
defined for all s = 0, plw| > e°. This solution satisfies
9]
2 lgi(9)l(pe™) < Ce.
i=0
The solution corresponding to T = 0 is explicit,
9]
gOw,s) = 1+e 2% g;(0) e w?
i=0
and the difference g™ — g satisfies
SUP(, 5 et 197 (W, 8) =g @ (w, 8)| < emin{e™* 7C(1—(p"/p))™; 3}
for any p’ < p.

This result shows that no singularity in the solution of the 7 > 0 problem arises
before the moment a singularity forms in the corresponding solution of the 7 =10
problem. At this moment the difference between solutions is small away from the
singularity.

Phil. Trans. R. Soc. Lond. A (1990)
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2. Existence of self-similar solutions
We recall the equation derived in Constantin & Kadanoff (1990)

1

r2dg/0t = 2—2g—Dg+2rr DI —D?* g2 (2.1)
with the condition
g(o) = 1. (2.2)
The quantity r is the radius of a circle of area n(2t+1). The operator D is
D =wod/ow (2.3)

and the solutions g we seek are analytic in the exterior of a closed neighbourhood of
the origin contained in the unit circle. We change the time variable to

s=¢e' (2.4)
and replace g by
w=1-g. (2.5)
The equation for w is

ou/ds = —2u— Du+27¢~* D[ — D?)(1 +u)* (2.6)

with the condition u(c0) = 0. We drop e~* in the above equation and obtain a more
dissipative autonomous equation:

ou/ds = —2u—Du+27D(I — D?)(1 4+ u) 2. (2.7)

In Constantin & Kadanoff (1990) we proved that (2.1) has solutions for initial data
close to 1 and these solutions remain close to the corresponding solution of the 7 = 0
problem up to the time when the latter becomes singular. Now we are investigating
the nature of the singularities in the 7 > 0 case. We study (2.7) and make the self-

similar ansatz:
w(w, s) = H(e”s w*). (2.8)

Because we are interested in the region |[w| > 1 we will seek functions H(z) which
are analytic in a neighbourhood of the origin (which contains [z| < 1). Because we
need single valued functions of w in a neighbourhood of co we assume that £ > 1 is
an integer. The time growth rate w is a real number. The condition at infinity for «
becomes

H(0) = 0. (2.9)
The equation for H is
21+ (w—k) D) H = 27kD(k*D? —I)(1 + H)=. (2.10)
The function Hw— (14 H)™# is analytic for H small and
(L+H) = 1 —L1H+f(H) (2.11)
with
SiH) = %c;H", (2.12)
j=2
¢ = (=17 (2))1/(2751)?, (2.13)
lim,,, l¢;] j8 = n%. (2.14)
The solution H of (2.10) solves
2]+ (w—k(1+7)) D+ 7k*D*| H = 27kD(k*D*—1) f(H) (2.15)

Phil. Trans. R. Soc. Lond. A (1990)
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in a neighbourhood of the origin. The equation (2.15) has only the trivial analytic
solution H = 0 unless the linear operator

L = 21+ (w—k(1 +7)) D+ 7%*D? (2.16)

annihilates the function z. (This is a simple exercise using the method of Constantin
& Kadanoff (1990).) The requirement above is equivalent to the dispersion relation

w=—2+k(14+71)—T1k. (2.17)

Let us consider the symbol of the operator L, call it m(j). It is defined for positive
integers j and, if we require (2.17) — as we must — then m(j) is given by

m(j) = 2—(2+7k%) j +7k353, (2.18)
or, better,
m(j) = Tk*(j—1)(5> +j— (2/7k?)). (2.19)
Now, clearly,
if k* > 1, then m(j) =7k*® for j=2. (2.20)

On the other hand, for 74 small, the equation m(j) = 0 has solutions if

R e{(2/j(j+1))|jeN, j = 2}.
We consider the set

A= (0, D\2/j(j+1)IjeN, j> 2. (2.21)
For any xe€ A there exists € positive, depending on x, such that
le—2/9(j+1)| = ¢/j forall j=2. (2.22)
Consequently
if 7k*cd, then [|m(j)|=e(j*—1) for jeN,j>2. (2.23)

If either 74® > 1 or 7k®*€ A then we will seek solutions H of (2.15) (and hence of
(2.10)) of the form

H(z) = cz+V,(2), (2.24)
where ceC is a small parameter and the analytic function V, satisfies
V,(0) = V,(0) = 0. (2.25)
The equation for V, is
V=2(I+K)flcz+7V), (2.26)
where the linear operator K has symbol a(j) given by
a(j) = (2+T7k(k*— 1)) j—2)/m(j) (2.27)

defined for j > 2, jeN. We consider, for fixed p the Banach algebra B, used in
Constantin & Kadanoff (1990) and take its closed subalgebra C, of functions
satisfying (2.25). We recall that this simply means that we are considering functions

V(e) = 3 0,2 (2.28)
j=2
satisfying VI, = X lvlp’ <co. (2.29)
j=2

The operator K is compact in all the algebras C,. The nonlinear functional
Ve F(c,V) = V-2 +K) flcz+ V) (2.30)
Phil. Trans. R. Soc. Lond. A (1990)
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is defined for any ceC, |¢| < d and VeO,, |[V|p < d for small d > 0. Moreover, it is
analytic in both variables and satisfies

F(0,0)=0 (2.31)
and 3F 5V (0,0) = 1. (2.32)
By the implicit function theorem there exists a unique complex curve V, of solutions
of F(,V) =0, (2.33)

defined for ¢ in a neighbourhood of 0 in C. The solutions V, can also be obtained for
fixed ¢, |¢| < d, via the rapidly converging iteration

VoD = 21+ K) f(cz+ V™), (2.34)
with V©® small enough because, for small d, the map
Ve2(I+K) flcz+ V) (2.35)

is a contraction in the ball of radius d in C,,.

Thus, if 7A*€ A or if 7k® > 1 then (2.15) has a unique solution of the form (2.24)
which is analytic in a neighbourhood of 0. (Unique because the coefficients in the
series expansion are uniquely determined by c.) On the other hand, if 7&% = 2/I(I+1)
for some ! > 2 then we cannot find solutions of the form (2.24). If we look instead for
solutions of the form H = cz'+V with V analytic and satisfying V(0) = V'(0) =
...V®(0) =0 we can repeat the whole procedure and find a complex curve of
solutions. It turns out, however, that these are not new solutions. Indeed, one can
easily see that V must be of the form V(z) = W(2!) and thus H(z) = G(2') where G is
the solution of (2.15) corresponding to k replaced by kl. (Note that the time growth
w(kl) corresponding to kl equals in this case / times the time growth corresponding to
k.) Therefore the solution u(w, s) = H(e** w™*) corresponding to k is the solution of the
same form corresponding to kl. Note that 7(kl)® > 1.

For fixed 7 and & the curve of solutions which we found is actually determined from
one such solution by dilations. The equation (2.10) is dilation invariant and
therefore if H is a solution so is H,(z) = H(cz) for any complex constant c.

Theorem 2.1. The equation (2.7) has solutions of the form
w(w, ) = H(ce”s w*)

Sfor any complex constant ¢, any values of the surface tension T and any positive integer
k. The function H is analytic in a neighbourhood of the origin. The time growth rate is
given by w==24+k(1+71)—7k>.

If k3 is not of the form 2/1(1+ 1) for | an integer, | = 2 then H s uniquely determined
by the conditions HO) =0, H(0)=1,

If Tk® = 2/U(1+ 1) the solution is the same as the one corresponding to the integer kl.

3. Formation of singularities

We will describe conditions which guarantee that the functions H determined by
the equations
[2] — (2 +7h(k?—1)) D] H = 27kD(k*D*—I)(1+ H)™%, (3.1)
H(0)=0, H(0)=1,
Phil. Trans. R. Soc. Lond. A (1990)
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have a finite radius of convergence. In the previous section we saw that H exists and
is analytic in a small neighbourhood of the origin if 7&? is not of the form 2/I(I+1)
for some integer ! > 2. In particular, H admits a power series expansion near the
origin

H(z) = z4a2®+..., (3.3)
where the constant a is given by
a = 37k(4k*—1)/4(37k*—1). (3.4)
Note that @ > 0 if, and only if, the positive integer k satisfies
Th® > % (3.5)

This is a significant condition because = max {2/I(I+1)|l > 2}. Another meaning of
(3.5) is the following: (3.5) holds if and only if the symbol m(j) of the operator L
(equations (2.16)—(2.18)) is positive for all j > 2. It will turn out that this is also a
condition of stability of H.

Theorem 3.1. If condition (3.5) above is satisfied and k = 2, then the solution H of
(3.1), (3.2) is not entire.

Theorem 3.2. If the inequalities (3.5), k = 2, and
w==—2+k(1+7)—7k*>0
are satisfied then there exist self-similar solutions
u(w, s) = H,(e*sw*)

of (2.7) which, at ttme s = 0 are analytic in an open domain containing the exterior of the
unit circle in the w plane and which cease to be so at a finite time s, > 0.

Theorem 3.2 is a straightforward consequence of theorem 3.1. The rest of this
section is devoted to the proof of theorem 3.1.

The reasoning will be by contradiction. Denote

F=(1+H)* (3.6)
so that H=F7?—1. (3.7)

First we note that the solution H is real for real z. We will prove that the function
F(x) must vanish for some positive . Where F vanishes, H is infinite (equation (3.7)).
The equation (3.1) is

2 Icz— 1
Ic3 k?

2D3F = ——DF ( )DH+T—i—3-H. (3.8)

We will use the notation D™ for the operation defined on functions ¥ which vanish
at the origin by the conditions

D(DV) =V (3.9)

and D1Y(0) = 0. (3.10)

Thus, if Viz)= X v (3.11)
j=1

then D 'W(z) = X j v, 7. (3.12)
4=1

Phil. Trans. R. Soc. Lond. A (1990)
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Also, for real z > 0, D! is given by

Zz

D7V (x) = f y Viy)dy, (3.13)

0

and consequently D™ V> 0 if V = 0 on an interval on the real positive semiaxis.
Applying D! to both sides of (3.8) we get

2D2F=%(F—1)——<T~2k—3+k2—k:2—1)ﬂ+£§1)’1ﬂ. (3.14)
We will multiply (3.14) by DF and apply again D™, To prepare for that, we note that
(DFYD'H = D(FD'H)—FH (3.15)
and that HDF = —-D(F+F1-2). (3.16)
We introduce the function
G=F+F1'-2+DY((DF)(DH)). (3.17)
We obtain from (3.14)
(DF? = F -1k 24+ (1—k ) FY+2G/7k>. (3.18)
Now we investigate the function G. First we note that
DG = —DF(H—DH). (3.19)

Because H(x) = x+ax®+..., it follows that F(z) = 1—3x+..., and consequently
DF(x) = —3x+.... Therefore, for small x>0, DF(x) <0. On the other hand
H(x)— D' H(x) = Jax®+ ... and, because of our assumption that a > 0 it follows that
H—D1H > 0 for small > 0. From (3.19) we deduce that D@ is positive for small
x > 0 and therefore so is G. From (3.18) it follows that the set

X={&>0|6y)>0, forall 0<y<a} (3.20)
is not empty. We used the notation
E=—DF—(1—F)(k2+(1—k2)F 1), (3.21)

We wish to argue that X must be the whole real positive semiaxis, unless F!
becomes infinite at finite . To do this we write DG in the form

DG = 2(—DF) D Y(F~3(— DF —1F(1 — F?))) (3.22)

and then in the form
DG = 2(—DF) D YF3E+F)) (3.23)
2+ (1= k) F'—XF (14 F))?
2+ (1—k2) F Y+ 1FF+1)

with F = (1-F) (3.24)

Consider a = supX. If 0 < < « then F is decreasing, so the denominator of # is
increasing. But the value of this denominator at x = 0 is zero, so it follows that

Fx)=20 for 0<z<a. (3.25)
From (3.23) it follows that

DGx) =20 for 0<zx<oc. (3.26)
Phil. Trans. R. Soc. Lond. A (1990)
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Then, in view of the fact that DG(x) > 0 for small z it follows that, if « is finite, then
G(a) > 0. (3.27)

But, because of (3.18) this would imply that
Ea)>0 (3.28)

which would permit the extension of the inequality & > 0 beyond «, contradicting
the way a was defined. Thus o =00 and so

—DF > (1—F)(k2+(1—k2)F 1) (3.29)
holds for all 0 < . But this is again absurd because any positive solution F of the

inequality (3.29) which starts out the way F does, must vanish at a finite z, > 0.
Indeed, denoting

M(z) = (k2 + (1—k2) F(2)), (3.30)
a direct computation shows that (3.29) is equivalent to
DM
—k? 1. .
2(1—Fk )(Mz—l)(Mz—k‘2)> (3.31)
This can be integrated
d. (M—1(M—k*\* d

In view of the behaviour of M at 0,
M(0) =1 (dM/dx) (0) = X1 —Fk7?), (3.33)
it follows from (3.32) that the function

M—1(M—k\*
M =1 M=k
M+1 <M+ k‘l) (3.34)
is increasing for positive x and has a finite limit C,, at = 0. Therefore
M—1(M—Fk*\F
for 0 < x, where
k
C,=3%1 —k‘z)(zck—i%) . (3.36)

Now, (3.35) is absurd because its left-hand side is an increasing function of M on the
interval 1 < M < oo and takes the value 1 at M = co. Thus, the left-hand side of (3.35)
is bounded above by 1 while the right-hand side is unbounded. This concludes the
proof of theorem 3.1.

As a by-product of the proof we obtain an upper bound on the radius of
convergence of the solution. Indeed, this radius cannot exceed the value of « which
turns (3.35) into an equality for M = co. This value is

vy = C7L. (3.37)

The limit of C,, as ko0 is Le?, which implies that the radii of convergence of all the
solutions H under consideration are uniformly bounded above, for all admissible
T, k.

Phil. Trans. R. Soc. Lond. A (1990)
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4. Stability of the self-similar blow up

Consider the equation (2.7) and one of the self-similar solutions (2.8). If we perform
the change

w(w, s) = h(e“Sw™*, s) (4.1)
then the difference
v(y,s) = hly,s)—H(y) (4.2)
obeys the equation
/s = —L(v—=2(I+K)(f(h)—f(H))), (4.3)
where f, L, K are given in (2.12), (2.16), (2.27). We write
J(h)—f(H) = ¢v (4.4)
with the function ¢ given by
¢ = f f((1—p)H+ph)dp (4.5)
(the integral is in B)). Setting
b=—=-2({+K)(¢v) (4.6)

the equation (4.3) is equivalent to the integral equations

v(s) = e ms ?)j(O)—I—J e "DE=0 p (o) do, (4.7)
0
relating the coefficients v; and b, of the power series expansions of v and b. Because
the operator (I + K) is bounded and diagonal (acts as multiplication by (1+a(j)) we
obtain

j-1

Sup0<s<s|”j(3)| < Ivj(O)l +0 2 (SupgcsesPi())(SUPg<s<s1v-1(8)]) (4.8)
-1

for all j > 2, provided we require (3.5) so that m(j) > 0. Actually, the inequality is
valid at j =1 as well because the integral term in (4.7) is absent in that case.
Multiplying by p’ and summing we obtain

“v”p S = ”UOH +n”¢“/} S”v”p N (49)
for all § > 0, where the norms are given by

”U”p,s =2 (Supossss|vj(3)|)/7j' (4.10)
j=1
The constant ' does not depend on either S or p. The spaces B, ¢ defined by these
norms are Banach algebras and were used for the proof of theorem 1.1 in Constantin
& Kadanoff (1990). Aslong as [[v]|, s+ [ H], is less than a small number & (for instance
half the radius of convergence of (2.12)) it follows that

21,5 < If l5- (4.11)

Because f'(0) =0, by taking § small enough we ensure 2C||f'|; <1 and then we
deduce from (4.9) that
Ioll,,s < 2lv,]l,.- (4.12)
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Now we choose p and |||, small enough so that
I1H1l,+2llv,ll, < 3. (4.13)
It follows that (4.12) holds for all § > 0. We proved the following theorem.

Theorem 4.1. Assume that the numbers 7, k and v = —2+k(1+7)—7k* satisfy the
inequalities
> k=2 >0

Then there exists p > 0 such that the solution H of (3.1), (3.2) is a nonlinearly stable
steady solution of the equation

Oh/ds = — (21 + (w—k) D) h+27kD(A2 D2 —T)(1 4 h)~3
in the norm ||| ,.

If the initial datum for the equation (2.7) is close at time s = 0 to the self-similar
profile H,(w™*) and is a function of w™*, then the solution stays close to the self-
similar solution H (e”*w™*) for all s in a region in the w plane, which recedes in time.

5. Conclusions

We found -solutions of the local equation (2.7) that develop singularities in finite
time for 7 > 0 and arbitrarily small or large. These solutions are self-similar and, in
a certain sense, the blow up is stable: when viewed in the similarity variables, the
self-similar solutions are nonlinearly stable. In contrast with the zero surface tension
case where any local singularity can occur, in the positive 7 case the isolated and non-
essential singularities seem to be § branch cuts. This number comes out of a simple
minded and yet inescapable balance of singular terms argument.

The local equation derived by us in Constantin & Kadanoff (1990) fails to capture
the non-local interactions of singularities. If the solutions to the full problem do not
develop singularities for positive 7 these non-local interactions must be responsible
for the regularity.
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